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ABSTRACT 

According to a result of K. Falconer (1985), the set D ( A )  = {Ix  - Yl; x ,  y 6 

A} of distances for a Souslin get A of R n has positive 1-dimensional measure 

provided the Hausdorff dimension of A is larger than (n+ 1)/2.* We give an 

improvement of this statement in dimensions n = 2, n = 3. The method 

is based on the fine theory of Fourier restriction phenomena to spheres. 

Variants of it permit further improvements which we don't plan to describe 

here. This research originated from some discussions with P. Mattila on 

the subject. 

Here is a sketch of the following. 

Let A C IR 2 have d i m A  > ~ .  T h e n  {Ix - yl;x,y E A} has positive measure 

(a) Take p < dim A. There is a probabi l i ty  measure # on A satisfying 

(i) 

and  hence 

/#(dx)#(dy) 

(2) fl~ I~(~)l:de < co. 
I>1 I~l 2-" 

Let B be a ball  of radius M in R 2. Then  (2) implies 

/B I/~(~)12d~ < M2-P" (3) 

* dim A > n/2 would be the optimal result for n _> 2. 
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This is clear if B is within B(0, 10M). Otherwise, consider a function ~o satisfying 

~>0,  ~>o,  
~ 1 on B(O,M), 

~5 = 0 outside (0, 2M). 

B 

Since f (x)  = (1 - cos(x, ~o))~o(x) is positive, one gets from the conditions on ~o 

1 

Hence 

(b) Let as be the arc length measure of Sl(s). 
inequality (0 < (~ < j3 < oo) 

f8 I~(~)1~ ~ CfB I~ff)l ~ < M2-P. 
(O,2M) 

It suffices to establish an 

E (4) I(~, ~ * °',)12ds < oo 

expressing that  the image measure ~(~) of ~ x # under the distance map Ix - yJ 

has an L2-density. 

Writing 

2 ei'l¢l 

(4) amounts to (from Parseval) 

[/ ]' f --  If~(reia)12dO rdr < oo. (5) 
J 
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Our next aim is to bound the quantities (cf. {M]) 

(6) ~(~)(r) = f If~(re'°)12dO 
as a function of r for r ~ (x). 

Assume we have proved that  (6) < r -x. Then (5) < f [~l-xl/~(~)12d~ and one 

may conclude (5) from (2), provided 

(7) ~ > 2 - p. 

(c) By taking a suitable convolution of #, we get a function F >__ 0 depending 

on r and satisfying by (2) 

(8) JF(~)l <-- JD(~)[, ~= IFJ 2 < r2-P 

and 

(9 )  
j~r r+l (6) /IF(rei°)rdg,,~ /F(rlei°)]2drldg. 

We will use some techniques from the restriction theory of Fourier transforms to 

spheres and the Bochner-Riesz problem (the geometric approach). 

Consider the annulus A 

R i 

1 

which we roughly reconstruct as union of ,~ v ~ rectangles Rj of measurements 

1 x v ~.  Thus (9) becomes 

(io) ; 
L4(R2) 
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One has IIFlll _< 1 and IIFll2 _ rl-p/2 by (8). Thus interpolation yields 

(11) llFlla/a < r½-~. 

For the second factor of (10), one follows the Cordoba-Fefferman argument, re- 

ducing the problem to the Kakeya maximal function in the plane. Thus 

(12) 

Define 

(13) 

(~I(..XR,) v 2) I/2 4(square function equivalence) 

v 2 1/2 

.,:/l(...,)V':l..(<> . 

(14) Tj = Cj 
Roughly speaking, the function ~-j may be obtained as a convex combination of 

translates of the function XI~/IR°I where R ° stands for the geometric "polar" of 

Rj, thus a (1 × ~7)-rectangle perpendicular on Rj and IR°l denotes its measure 

(see [B1], section 6, for more details on these matters). Estimate ~ j  cjvJll2 by 

duality. Consider the maximal function 

(15) A46f(() = sup ~ If[ 

defined for ( E S 1, where the sup is taken over all rectangles a directed along ( 

with unit length and with 

One has the inequality (for this "Kakeya" maximal operator; see, for instance, 
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[F2], Section 7) 

(16) 
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[[./~4~fiiL2(S1) <_ (Iog ~) I/2 i[fIiL2(R). 
One gets from the preceding for NfH2 -< 1 

<Z cj~'j,f > <-- Z cj(M1/v'Tf)(fj) 
J J 

(17) 1/2 

<~ (~ c2) rl/4 (~j --~'('/~l/x~f)((J)[2) 

where {(j [j = 1, . . . ,  x/7} is a ,-~ ~ separated set on S 1. Hence 

/ ~ 1/2 

(17) ~" / 3~. c2 ) rl/41iA41/v~fl12 

1/2 

Since R~ is contained in, a ball of radius V'F, (3) and (8) imply 

(18) cj < r 1-§. 

Collecting estimates (9), (10), (11), (17), (12), (18), it follows that 

[, ,~ l / i  
(19) ( 9 ) < r  r2 4 . t i o g r ) 4 r -  r4 s cj 

where in fact 

j Rs 

Thus from (19) 

(20) 

Thus in est imating (6), one may  take any 

(21) A < -p- - - 
2 

I _  s-£~e i _ £ ~  e (9) 3/4 << r . .  - ~ (9) << re 5 -  

1 

6 

i /2  
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and condition (7) becomes p > ~ ,  as claimed. 

(d) In the higher-dimensional case, there is an improvement on ~ using 

previous reasoning and the results from my previously mentioned paper, at least 

for n = 3. 

(2) becomes 

(22) 

and (5) 

1>1 I~1 n - p  

]2 
(23) f IP(r¢)12d~ r n - l d r  < co. 

n - 1  

In order to deduce (23) from (22), one needs the estimate 

( 2 4 )  a(#)(r)-- fs I#(r¢)i2dff << ro-n" 
r * - - I  

Let us just use L2-restriction theory to bound the left member of (24). The L 2 

restriction exponent is ~ = p.* The function F satisfies IIFIIL2(R~) < r ~--V n+3 
~.-- 1 ~ . . ~ _  

and hence IJFIIp < r~+, , Define F, . (x)  = ! F ¢ ~  = _ . ~. ,~, ,  so tha t /~ (~ )  /~(r ), 

^ 2 

(25/ (24/~ IF, Is L'(S~_I) <- cllF~ll~, 

(26) 

From (25), (26) condition (24) yields 

n - 1  
p~%-~ > n - p, 

(27) 
n + l  p > ~  

2 

(e) Using the (partial) knowledge of the La-restriction phenomena for q < 2 

from [B1], [B2], a small improvement on (27) may be derived, in dimension n = 3. 

We proceed as follows. Write 

^ 2 v 

* S e e  [St] for a s u r v e y  o n  th i s  s u b j e c t .  
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Next recall an inequality from [B2] (see lemma 3.23) which in the present context 

implies for 

(29) v = Fr .a2, 

tl / 1,4 
IIE][L4(RS) ~ logr ~4 ~ L10/9("r) 

~ d  " . ~ 1  

(30) ~ c ,  

<(logr)2  sup (,e~c 64 dv 4 ~1/4 
- .~<~<1 ~ L~o/~(~)] " 

We give some explanations related to (30). For each 0 < $ < 1,C6 denotes a 

collection of ~-caps of S~ forming a covering of bounded multiplicity. L*(r) refers 

to the LS-norm on T equipped with normalized measure. 

Another inequality (see [B1], [B2], Prop. 2.15) expresses a restriction-extension 

phenomenon beyond the L2-theory. 

For 4 > • > ~ ,  there is the inequality (see [B1]) 

(31) II~'IIL,(R3) <-- C ~ L,(S,)  

Recall also from inequality (22) the bound 

(32) 
. 2 ^ 2 1 1~(~.)]2d~. < 1(r.(~)3_ p 

where r C $2 is a ~-cap, $ > 1/r. The last inequality in (32) follows from the 
fact that fB ]/~(~)] 2d~ --< Mz-P for B an M-ball in R 3. The proof is analogous to 

(3). 
It follows from (30) that 

(33) 

IlF,,V2l[4<(logr)2(max ,W 2 dv 1/2 /sl~p(,~...~ 2 d/jl2 ,~1/4 
- ';'~<~:' ~ ~'0,'(.)] ~,~c. do L'( , ) /  

1/2 

- -  IIL2(S,~) ~<1<I L1OlO(r) rEC6 
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where dv F~Is. 

Hence from (28), (26) 

(34) 
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) 1/3 

I 2[]FrH4/32/3 max8 dv t ~rls L2(S) <- (1ogr) da L,6/9(~) 

(35) <_ (togr)2r -°/6 max 8. "~a L~6/,(.) 

We will next estimate the last factor of (35). First, from (32) 

(36) ( ~  [~r(~) 2a(d,))1/2 < r~-~2 5 

Next, we exploit (31). Writing 

1 1 -0  0 
(37) I"-F = - -  + - 

~- 2 pl 

estimate 
1--0 

516/~(.r) 

and from (36) and the inequality dual to (31) 

(39) (38) ___ 5 -1/8 II , < 5-1/85 ~-a (l-o) r k~- (1-o) r-pO//~. 

Since p < 2, the exponent of 5 in (39) is positive and we let thus 5 = 1. Hence 

Condition (24) becomes 

pO 3 - p (41) P6 1 P ( 1 - 0 ) + ~ - ~ > - - 7  

Letting/~ = ~ ,  (37) determines 0 and from (41) the condition on p becomes 

1091 
(42) P > 54----6 = 1.998... 

(f) Final remark. Defining 8(#) as the image measure under the distance map 

Ix - y] of # x # (following [M]), the main point in the preceding is to obtain (for 

n = 2, 3) the property 

(43) 5(#) e L 2 

assuming Ia(#) = f f  Ix - yl-a#(dx)#(dy) < co for some a < ~2"~" This is the 
problem considered in remark 4.10 from [M]. 
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